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ThB article reexamines the notion of closed-loop carrier phase synchronization

motivated by the theory of maximum a posteriori phase estimation with emphasis on

the development of new structures based on both maximum-likelihood and average-
likelihood functions. The criterion of performance used for comparison of all the

closed-loop structures discussed is the mean-squared phase error for a fixed-loop
bandwidth.

I. Introduction

It is well known [1] that estimation of an unknown parameter based on a likelihood function approach

is optimum in the sense of maximizing the a posteriori probability of the parameter given the observation.

For the case where the unknown parameter is the random phase of a carrier received in a background

of additive white Gaussian noise (AWGN), optimum open-loop structures have been derived for imple-

menting the resulting phase estimate [2,31. Herein, these structures are referred to as "open-loop carrier
phase estimators."

When the carrier is data modulated, the conditional probability density function (pdf) of the
observation--given the carrier phase--depends on the data sequence that exists during the interval of

observation for the received signal. Hence, before maximizing this function with respect to the carrier

phase, one has to choose how to eliminate its dependence on the unknown data sequence. If one is inter-

ested in determining only the optimum carrier phase estimate, the appropriate choice is to average the

conditionM pdf over the unknown data sequence. We shall refer to the phase estimate obtained by this

process as the "average-likelihood" (AL) estimate. If, however, one is interested in joint phase estimation

and data detection, the appropriate choice is to first maximize the conditional pdf with respect to the

data sequence (resulting in the most probable sequence), and then to maximize it with respect to the
carrier phase. 1 We shall refer to the phase estimate obtained by this process as the "maximum-likelihood"

1 In principle, the order of maximization operations could be reversed.
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(ML) estimate. 2 It has often been conjectured, although never proven, that from the standpoint of phase
estimation alone, the ML phase estimate is suboptimum to the AL estimate. Because of this, what is

typically done in practice is to derive the AL carrier phase estimate and then use this estimate as the

phase of a demodulation reference signal for performing bit-by-bit data detection. However, it should

be understood that, from the standpoint of joint estimation of data and carrier phase, this sequential

operation of first deriving the carrier phase estimate in the absence of any knowledge of the data (the

AL approach) and then detecting the ensuing data using the phase estimate so derived is, in general,
suboptimum.

Aside from the. optimality of the AL and ML approaches to open-loop estimation of carrier phase,

likelihood functions have also been used as motivation for closed-loop carrier phase synchronization.

Emphasis is placed on the word "motivation" since, indeed, there is no guarantee that the resulting

closed-loop schemes are optimal; nor can one guarantee that those schemes motivated by the AL approach

will outperform those motivated by the ML approach (although typically this turns out to be the case,

as we shall show.) Nonetheless, as we shall see, closed-loop carrier phase estimation schemes motivated

by likelihood functions do indeed yield good tracking performance (as measured by the mean-squared

value of the loop phase error). In fact, under suitable assumptions, many of them are synonymous with
well-known carrier tracking loops, e.g., the I-Q Costas loop and the I-Q decision feedback or polarity-type

Cost_s loop [4,5] that have been around for many decades.

It is the intent of this article to explore in more detail the structure and performance of closed-loop

carrier phase synchronization loops motivated by likelihood functions, i.e., those in which the derivative

(or some monotonic function of the derivative) of the conditional pdf of the observation given the carrier

phase is used as an error signal in a closed-loop phase estimation scheme. Herein, for the purpose of

abbreviated notation, we shall refer to such loops as AL and ML closed loops depending on the particular

likelihood function used to define the error signal.

It is important at this point to mention that the notion of closed loops based on likelihood functions

according to the above definition is indeed not new, and one should not attribute its originality to the
authors of this article. Rather, the purpose of this article is to expand upon this notion and present

some new loops motivated by likelihood functions along with their tracking performances. As such,

we are not reinventing the wheel but, rather, adding some more spokes to it. Our specific motivation

for reexamining this problem comes from a deep-space communication application involving the Galileo

S-band (2.3 GHz) mission, which employs low-rate (r = 1/4) concatenated Reed-Solomon/convolutionally

encoded binary phase-shift keying (BPSK) [6]. Because of a malfunctioning high-gain X-band (8.4 GHz)

antenna, the mission must rely on a low-gain S-band antenna (and, thus, much reduced link margin) for
data transmission back to Earth. At Jupiter encounter, the symbol energy-to-noise spectral density ratio,

Es/No, could be as low as -11 dB. One technique for improving this situation is to use antenna array

combining [7] wherein the signals from multiple antennas, either collocated or at distant geographical

locations, are combined to build Es/No. Even then the equivalent Es/No could still be as low as -5 dB.
Thus, in our application, there is a serious need to find as efficient a carrier tracking loop as possible

in the sense of producing minimum phase jitter at very low Es/No. In the more general •context, it is
important to point out that, in coded systems, the carrier-loop performance is dependent on the symbol

energy-to-noise ratio E_/No rather than the bit energy-to-noise ratio Eb/Yo and, thus, becomes critical

when Es/No becomes small, despite the fact that Eb/No might be large. In uncoded systems where

Es/No = Eb/NO and is large, the search for a more efficient carrier tracking loop is somewhat academic

since the known configurations perform quite well and are virtually identical to one another.

2 In the strictest of parlance, both the AL and the ML phase estimates are maximum-likelihood estimates since the term
"maximum-likelihood estimation" is typically reserved for estimating a purely unknown (uniformly distributed) random
parameter. However, to allow for distinguishing between the two different ways in which the data sequence is handled,
we shall use the above terminology.
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The hierarchical structure of the problem and also the way in which it is addressed in this article is

illustrated by the tree diagram of Fig. 1. We have already discussed the first level of the overall dichotomy

in terms of the ML and AL approaches. This level of the chart as well as those below it will take on more

meaning as soon as we develop a mathematical formulation of the problem in Section III.
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OBSERVATION

PARTITIONED
OBSERVATION

I-Q MAP
ESTIMATION LOOP

EACH OF THE @ESTIMATORS HAS TWO FORMS DEPENDING ON WHETHER
THE L-SYMBOL OBSERVATION IS TAKEN AS A WHOLE OR PARTITIONED INTO

L-INDEPENDENT SYMBOL INTERVALS, EACH OF DURATION Tsec

I-Q POLARITY-TYPE
COSTAS LOOP

Fig. 1. A hierarchical structure of the open-/closed-loop carrier phase estimation problem for data-modulated signals.

II. System Model

Consider a system that transmits BPSK 3 modulation over an AWGN channel. As such, the received

signal takes the form

r(t) = V_Sd(t) sin (wet + 8) + n(t) = s (t; 8, d(t)) + n(t) (1)

where S denotes the received power, wc is the carrier frequency in rad/sec, 8 is the unknown phase

assumed to be uniformly distributed in the interval (-?r, ?r), n(t) is an AWGN with single-sided power

3 We restrict ourselves to the case of binary modulation. By a straightforward extension of the procedures discussed, the
results can easily be extended to M-ary modulation.
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spectral density No W/Hz, and d(t) is a binary-valued (+1) random pulse train defined by the rate 1/T

binary data sequence {di} and the rectangular pulse shape, p(t), as

oo {1; 0<t<Td(t)= _ dip(t-iT), p(t)= 0; otherwise (2)
i=--oo

For an observation interval of L bits [we assume without loss of generality the interval (0,LT)], the

conditional pdf of the received signal (observation) given the unknown phase and the particular data

sequence, di, transmitted in that interval is easily shown to be

p(r(t)[O, di(t)) = Coexp \ No Jo r(t)di(t)sin (wct +O)dt _ qi(O)
(3)

where di(t) is the transmitted waveform corresponding to the transmitted sequence in accordance with

Eq. (2) and Co is a constant of proportionality. To proceed further, we must now choose between AL and

ML approaches.

III. Closed Loops Motivated by the AL Approach

A. Structures

Suppose that we are interested in estimating only the carrier phase, 0. Then, as previously mentioned,

the appropriate approach is to average p(r(t)JO, di(t)) over all possible (2 L) and equally likely data

sequences yielding the conditional pdf p(r(t)]O) A= qAL(O). One AL open-loop phase estimate (herein

referred to as "AL open-loop estimator no. 1") is obtained by finding the value of 0 that maximizes

qAL (0), namely (see Fig. 1: OAL _= maxo 1 qAL(O), unpartitioned observation)

2L )i=1 \ No r(t)disin (wet ÷ O)dt
(4)

where the inverse maximum notation "max-If(O) '' denotes the value of 0 that maximizes f(0). Alter-

nately, breaking up the integration over the entire observation into a sum of integrals on each bit interval

and recognizing that the data bits are independent, identically distributed (iid) binary random variables,
then p (r(t)lO) can be expressed as a product of hyperbolic cosine functions. A second AL open-loop

phase estimate (herein referred to as "AL open-loop estimator no. 2") is obtained by finding the value of
0 that maximizes this product form of qAL(O)_ which corresponds to partitioning the observation into its

individual bit intervals. The result is (see Fig. 1: OAL ix max° _ qAL(O), partitioned observation)

L-1 (2V_ [(k+l)T )OAL2 _ max -1 1-I cosh r(t) sin (wct -t- O)dt (5)
o \ Nok=O

It is important to emphasize here (and we shall repeat this emphasis later on in the closed-loop dis-

cussion) that partitioning or not partitioning the observation interval has no effect on the value of the

optimum estimator nor on its performance. That is, optimum open-loop OAL1 and OAL2 are mathe-

matically identical. The difference between the two lies solely in their implementation and likewise the

difference in the closed-loop implementations motivated by these estimates, as we shall see shortly.
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Finally, one could obtain an AL open-loop estimator by maximizing any monotonic function of qAL (8),

for example In qAL(O). The reason for choosing the natural logarithm as the monotonic function is to

simplify the mathematics, i.e., to convert the L-fold product in Eq. (5) to an L-fold sum. Thus, the

third AL open-loop phase estimate (herein referred to as "AL open-loop estimator no. 3") is obtained by

finding the value of 0 that maximizes lnqAL(O) with qAL(O) in its partitioned form. The result is (see

Fig. 1: 8AL a_ max,1 ln qAL(8), partitioned observation)

L-_ ('2V_ f (k+_}T r(t)sin(wct+O)dt)a----max-1 _-_ lnc°sh \0 k=0 N° JkT
(6)

Block diagram implementations of AL open-loop estimator no. 1 [Eq. (4)] and AL open-loop estimator

no. 3 [Eq. (6)] are illustrated in Fig. 2, no. 3 being the form most commonly found in discussions of

open-loop maximum a posteriori (MAP) carrier phase estimation. In drawing these implementations, we

have quantized the unknown phase into Q values, and thus the maximization over the continuous phase

parameter 0 in Eqs. (4) and (6) is approximated by maximization over a Q-quantized version of this

parameter.

(a) /dj(_} q(e,)D,.

r(t) A I _ r LT . I _ {q_(ek)}/"T_ q(ek)

sin (%t+ ok) q(eo)lP"

ICHOOSE
Imax-lq(e t

(b)

r(t)

sin (coct+ok)

In cosh(,)

v(!O-I=..

v(ek) ICHOOSE

•-'- imax-1 v(Oi

@

-------_-6

,: ..., •

•, L:"

Fig. 2. Implementation of two AL open-loop phase estimators: (a) AL open-loop estimator no. 1--observation
unpartitioned (quantized parallel implementation) and (b) AL open-loop estimator no. 3--observation partitioned
(quantized parallel implementation).

Conceptually, a fourth optimum AL open-loop estimator, _AL4, could be obtained by maximizing

In qAL(O) with qAL(O) in its unpartitioned form. However, in view of the above discussion, _AL3 and _AL4

would be mathematically identical and, since _AL4 appears to have no implementation advantage, we do

not pursue it here.
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Closed-loop phase synchronization structures 4 based on the four AL open-loop estimators are obtained

by choosing as error signals, e, the functions respectively given by dqAL(O)/dO and dln qAL(O)/dO where

qAL(O) and In qAL(O) each takes on its unpartitioned or partitioned form. For simplicity of notation, we

shall refer to these four closed-loop structures as AL closed-loop nos. 1, 2, 3 and 4. The implementations

corresponding to AL closed-loop no. 1 and AL 61osed-loop no. 3 (the two simplest implementations of

the four) are illustrated in Figs. 3(a) and (b), the latter being what is commonly called an "I-Q MAP

estimation loop" [8,9]. The special cases of Fig. 3(b), wherein the hyperbolic tangent nonlinearity is

approximated by linear and hard limiter devices, corresponding respectively to low and high signal-to-

noise ratio (SNR) conditions, are commonly called the "I-Q Costas loop" [4] and "I-Q polarity-type Costas

loop" [5].

(a)

r(t)

(b)

sin (COct+_) di(f)

cos (COct.;) di( _

sin ((Oct + _)

FILTER

r(t)

_2 2_f-_-r (k+llT I I"-'-_o .IkT (=)dt_l

_ 2-_/'_- _"(k+l)T •dt ]

cos (¢Oct. _)

tanh_)

TO LOOP

FILTER

Fig. 3. Implementation of two AL closed loops: (a) AL closed loop no. 1--observation unpartitioned and (b) AL

closed loop no. 3---observation partitioned.

4 For ease of illustration, we show only the portion of the closed loop that generates the loop error signal, which in the

actual implementation becomes the input to the loop filter.
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Before proceeding, it is important to reemphasize that because of the monotonicity of the logarithm

function, the AL open-loop phase estimates OAL3 and OAL4 are mathematically identical to OAL1 and OAL2

and thus yield identical performance. However, the equivalent statement is not necessarily true when

considering the performances of the closed loops motivated by these four different AL formulations. More

specifically, the closed loops motivated by _AL3 and _AL4 do not necessarily yield the same performance

as those motivated by _AL1 and _AL2" The reason for this stems from the fact that the closed-loop

performance (when properly normalized) is proportional to the derivative of qAL(O) (or lnqAL(O) as

appropriate) in the neighborhood of its maximum, which in general is different for qAL(O) and ln qAL(O).

However, we hasten to add that since partitioning does not change the functions qAL(O) or lnqAL(O)

themselves, the closed loops derived from either the partitioned or unpartitioned forms of the likelihood

(or log likelihood) function should yield identical performance, i.e., AL closed-loop no. 1 and AL closed-

loop no. 2 will have identical performance, as will AL closed-loop no. 3 and AL dosed-loop no. 4.

B. Performance

In assessing the performance of one closed-loop scheme versus another, one must be careful to normalize

the loop parameters to allow a fair basis of comparison. In this article, the comparison will be made on

the basis of mean-squared phase error, a_, for a fixed-loop bandwidth, BL .5 This is the typical measure

of performance used to describe a closed-loop phase synchronization structure when it is operating in its

tracking mode.

An analysis of the closed-loop performance of AL closed-loop no. 1 [Fig. 3(a)] results in an expression

for the mean-squared phase error given by 6

L 2L 2L A_=1 _-_y=1 D_j exp {2Rd(n + D_ + Dj + Diy)}] 1

........ - (7)

where

S ST

P- NoBL' Rd No (8)

and

with

L-1 L-1

k=0 k=O

d _- (do, dl,..., dL-1) : transmitted data sequence

di _ (di0, dil,'", di,L-1) : ith data sequence; i = 1, 2,..., 2 L (10)

s It is important at this point to emphasize that BL, being proportional to the total loop gain, includes the slope of the loop

S-curve at the origin as one of its factors. Since, in general, this slope is different for the various loops being investigated,

it is absolutely essential to include this normalization (as we have done) in the definition of B L when comparing the
performance of these loops.

6 All of the performance results given in this article will be based upon the so-called "linear theory" [3], which assumes that
the loop operates in a region of high loop SNR.
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In Eq. (9), D_ represents the correlation of the ith data sequence with the transmitted sequence, and Dij

represents the correlation between the ith and the jth data sequences. Some properties of Di and Dij
that are particularly useful in obtaining many of the results that follow are summarized as

2 L 2 L

EED ,:0
i=, j=l

2 L 2 L 2 L 2 L

i=1 j=l i=1 j=l

2 L 2 L L

i=1 j=l m=0

2 L 2 L

E E DiDjDij = 22LL
i=1 j----1

(11)

The factor S L represents the loss of the effective loop SNR, p' _x a_2, relative to the loop SNIP, p, of a
phase-locked loop (PLL). For certain configurations, as we shall see, this loss is synonymous with what

is commonly referred to as "squaring loss" [4,10].

At first glance, it might appear that, for given values of p, Rd, and the observation length, L, the mean-

squared phase error would be a function of the particular sequence chosen as the transmitted sequence.

It is easy to show that indeed this is not the case, i.e., a_ is independent of the sequence selected for d. 7

To see this, consider a sequence dz _ (dl0, dn,..., dz,L-1) _ d and rewrite Di and Dij as

L-1 L-I

k=O = 1 k=O

L-I L-I

k=0 = 1 k=0

(12)

where d_ = dkdlk represents the kth element of some other possible transmitted sequence d'
' ' • d'(d0,dl,'" , L-l) and dik = dzkdik,d_k = dlkdjk are the kth elements of two other possible sequences

d{ _- (<o, <1,'", d{,L-1) and dS. _ (d_0, d_l,... , d},L_l) , respectively. Since, in general, d' # d and since

the summations on i and j in Eq. (7) range over all possible (2 L) sequences, then substitution of Eq. (9)

into Eq. (7) shows that cr_ evaluated for a transmitted sequence equal to d' is identical to that evaluated
for a transmitted sequence equal to d.

Special cases of Eq. (7) corresponding to L = 1, 2, and 3 are given below:

7For convenience in the evaluation of Eq. (7), we may choose the all-l's sequence for d, in which case Di simplifies to
L--1

Ek=0 dik' which takes on values of L - 2m, m = 0, 1,2,.. • ,L.
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1 [ e 24Rd -I- 5e 16R_ -t- 3e sR_ -- 9 ] . L = 3 (13)

Figure 4 is a plot of SL (in dB) versus Rd (in dB) corresponding to the three cases in Eq. (13). We

observe that the performance of AL closed-loop no. 1 as implemented in Fig. 3(a) is clearly a function of

the observation length of the corresponding open-loop estimator that motivated the structure.

i I I I I_

0 -15 -

-20

- ALno. I(L=2) _k I

-25 - - AL no. 1 (L = 3)

/
-3o I I I I I I I I I

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

Rd, dB

Fig. 4. Squaring-loss performance of AL closed-loop no. 1 with observation length L as a parameter. I&D
weighting coefficients as determined by MAP estimation theory.

For large Rd, it is straightforward to show that a_ has the asymptotic behavior

~ _e_LR" ,SL~ e-_LR_
P (14)

For small Rd, _ has the asymptotic form

(15)

which is independent of L.
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Looking at Eq. (14) and Fig. 4, one gets the impression (and rightfully so) that the mean-squared
phase error of AL closed-loop no. 1 becomes unbounded as Rd -_ c_. This singular behavior can be

traced to the fact that the 2vf_/No weighting coefficient of the two integrate-and-dump (I&D) circuits

in the closed loop of Fig. 3(a) becomes unbounded as Rd -_ c_(N0 -_ 0). Suppose instead that we were to

replace this coefficient by an arbitrary constant, say K0. From the standpoint of open-loop estimation of

8, AL open-loop estimator no. 1 of Eq. (4) with 2vf_/No now replaced by K0 would remain unchanged.

That is, the choice of the weighting constant preceding the L- bit integration has no effect on the open-loop

estimate. On the other hand, the choice of this weighting coefficient for the closed-loop scheme has a

very definite bearing on its performance. In particular, with 2v_-S/No replaced by K0 in Fig. 3(@ the
mean-squared phase error, previously given by Eq. (7), now becomes

" 2L 2L {K(Di + Dj) + +iY_i=lY_d=lDidexp K2 (2-_d)(1 _)}

p_
(16)

where we have further normalized the weighting coefficient as K __a(V/-_) KoT. Note that if we set

Ko = 2v'2-S/No as before, then K = 2Rd and Eq. (16) reduces to Eq. (7).

From Eq. (16), we see that as long as K0 (or equivalently K) is finite (which would be the case in

a practical implementation of the AL closed-loop scheme), the large SNR asymptotic behavior of AL
closed-loop no. 1 now becomes

L 2L 2L ]

lim a_ = lira NoBL ___._=_kl_j=___D_jex__pp{K(D_ + Dj)}

Rd-_oo * No-*0 _ [Y_m=0 (m)(L- 2m)exp{K(L- 2m)}

= 0 (17)

which is what one would expect. What is interesting is that, for any value of Rd, the value of K that

minimizes Eq. (16), which, from the standpoint of closed-loop performance as measured by mean-squared

phase error, would be considered optimum, is K _ O, independent of Rd. In fact, if one takes the limit

of Eq. (16) as K --* 0 [this must be done carefully using the properties in Eq. (11)], the following result
is obtained:

lima_A (a_) 1[1+2--_d ]= : - --_ (&)ma_ --
K--_O .r rain p

1 2Rd

1 + (1/2Rd) 1 + 2Rd
(18)

Interestingly enough, the result in Eq. (18), which is now independent of L, is also characteristic of

the performance of the I-Q Costas loop [4], which is obtained as a low SNR approximation to AL closed-

loop no. 3. It is important to understand that the optimum closed-loop performance of Eq. (18) is a
consequence of optimizing the weight (gain) K for each value of L. If instead of doing this, one were

to fix the gain K for all values of L (as suggested by the MAP estimation approach), the closed-loop

performance (as measured by a_ with fixed-loop bandwidth) is suboptimum and indeed depends once

again on L. One final note is that the small SNR behavior of Eq. (18) is identical to that of Eq. (15),
the reason being that the value of K = 2Rd used in arriving at Eq. (15) approaches the optimum value
(K = O) as Rd ---* O.

As previously stated, the performance of AL closed-loop no. 2 is identical to that of AL closed-loop

no. 1, and thus no further discussion is necessary. The performance of AL closed-loop no. 3 (and also
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AL closed-loop no. 4) has been obtained previously [8]. In particular, the mean-squared phase error
performance of this loop is given by

1 I tanh2{2Rd-x/r_X} ] i, 1

4 =; [ ..... 2 -[tanh{2Rd_Vr_X}] J - -_L

(19)

where X is a zero-mean, unit-variance Gaussian random variable, and _he over bar denotes statistical

averaging over X. A plot of 85 versus Rd is superimposed on the curves of Fig. 4. We first note that

the performance as given by Eq. (18) is independent of L. Furthermore, a comparison of the squaring

loss as determined from Eq. (18) with that calculated from Eq. (17) reveals that the performance of AL

closed-loop no. 3 is superior to that of AL closed-loop no. 1 with optimized gain for all values of Rd (see
Fig. 3 of [8]). As mentioned previously, if the hyperbolic tangent nonlinearity in Fig. 3(b) is approximated

by a linear device (i.e., tanhx _ x), then the two loops have the same performance.

What is particularly interesting for AL closed-loop no. 3 is that even though the performance in Eq. (19)

is computed assuming a weighting coefficient in front of the I&Ds in Fig. 3(b) equal to 2v/2S/No, the
behavior of this loop is not singular in the limit as Rd ---* oo. Furthermore, it is natural to ask whether

the above weighting coefficient is indeed optimum in the sense of minimizing a_. To answer this question,

we proceed as we did for AL closed-loop no. 1, namely, we replace the weighting coefficient 2x/-ff-S/No by
an arbitrary constant, say K0, and proceed to optimize the performance with respect to the choice of this

gain. s Making this replacement produces a mean-squared phase error, analogous to Eq. (19), given by

1 [ tanh2{K[2Rd- xfffR-dX]} I _ 1
(20)

i

i:i̧_/ii_IIII

/L?:!

, ) ,!

where, as before, we have further normalized the weighting coefficient as K _= KoNo/2x/_. Maximizing

the squaring loss factor SL (i.e., minimizing a_) in Eq. (20) results in K = l(K0 = 2v_S/N0) for all values
of Rd. Thus, for AL closed-loop no. 3, the optimum gain from the standpoint of closed-loop performance is

precisely that dictated by the open-loop MAP estimation of O, and the best performance is that described
by Eq. (19).

We conclude our discussion of AL closed loops by pointing out that, in view of the superiority of
Eq. (19) over Eq. (18), AL closed-loop no. 3 outperforms AL closed-loop no. 1 for all values of Rd.

IV. Closed Loops Motivated by the ML Approach

A. Structures

The ML approach to estimating the carrier phase, 0, is to maximize (rather than to average)
p(r(t) Idi(t), O) over all possible (2 5) and equally likely data sequences. Analogous to AL open-loop estima-

tor no. 1, "ML open-loop estimator no. 1" is defined by (see Fig. 1:Ou5 _-_maxo 1qM5(O), unpartitioned
observation)

s Again we note that this replacement does not affect the open-loop estimation of 0 using Eq. (6).
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OML1 = max-lq_(O)
0

\{d,(t)} _ r(t)di(t) sin(wet + O)dt
(21)

where _ is the particular value of i corresponding to the data waveform d_ (t) that achieves the maximiza-

tion. Alternately, by breaking up the integration over the entire observation into a sum of integrals on

each bit interval (the partitioned form of the observation) and recognizing that the data bits are iid binary

random variables, then Eq. (21) evaluates to (see Fig. 1: OML A__ maxo 1 qML(O), partitioned observation)

)OML2 = max-1 H exp r(t) sin (wct + O)dt
0 \1 NO kTk=O

(22)

This estimator is analogous to Eq. (5) and is called "ML open-loop estimator no. 2." Next, we obtain ML

open-loop estimates by maximizing the natural logarithm of q_(0). Using the product form of q_(0) as in

Eq. (22), one obtains (see Fig. 1: OML _= maxo 1 lnqML(O), partitioned observation)

OMLa = max-1 r(t) sin (wct+ O)dt
o _-o- No JkT

(23)

which is analogous to Eq. (6) and therefore called the "ML open-loop estimator no. 3." Finally, we

consider a fourth ML open-loop estimator, which is based on maximizing the natural logarithm of q_(O)

in its unpartitioned form of Eq. (15). This leads to "ML open-loop estimator no. 4," which is defined by

(see Fig. 1: OML zx max° 1 ln qML(O), unpartitioned observation)

foOML4 = max -1 r(t)d_(t) sin (w_t + O)dt
o No (24)

Block diagram implementations of ML open-loop estimator no. 1 [Eq. (21)] and ML open-loop estimator

no. 3 [Eq. (23)] are illustrated in Fig. 5 as representative of the four possibilities. In drawing these

implementations, we have again quantized the unknown phase into Q values and, thus, the maximization

over the continuous phase parameter 0 in Eqs. (21) and (23) is approximated by maximization over a
Q-quantized version of this parameter.

As was true for the AL case, it is important to emphasize that the four ML open-loop phase estimates

as described by Eqs. (21) through (24) are identical. However, we shall again see that this same statement

is not true when considering the performances of the closed loops motivated by these four different ML
formulations.

Closed-loop phase synchronization structures based on the four ML open-loop estimators are obtained

as analogies of their AL counterparts, choosing as error signals, e, the derivatives with respect to 0 of

the functions being maximized in Eqs. (21) through (24), respectively. Analogous to the terminology

used for the AL case, we shall refer to these four closed-loop structures as ML closed-loop nos. 1, 2, 3,
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(a) sin (a)ct+ek) {di (f)}

_Jl_ )_, _ X, _--_t J (e)dt_'_exp(e)_'_l max ]_-----IP_lmax-lq(e/)_l_-(_

q(eo- ' --

(b)

r(t)

v(e,)

-- _2_'_-NOST (k+l)T(e)dt H_,. _ Lol= V(Oo)v(Ok)_i max-1 v(0/)CHOOSE _. 0

sin (O)ct+ek)

Fig. 5. Implementation of two ML open-loop phase estimators: (a) ML open-loop estimator no. 1--observation
unpartitioned (quantized parallel implementation) and (b) ML open-loop estimator no. 3mobservation partitioned
(quantized parallel implementation).

and 4. An implementation of ML closed-loop no. 1 is illustrated in Fig. 6(a). We also show here in

Fig. 6(b) an implementation of ML closed-loop no. 1 (or ML closed-loop no. 2) for the special case of

L = 1 since, as we shall see shortly, this particular of L yields the best performance. It is worthy of note

that ML closed-loop no. 3 is identical in form to the I-Q polarity-type Costas loop [5], as can be seen in

Fig. 6(c). (Note that the L-fold accumulator that precedes the loop filter can be omitted since it can be
absorbed into the loop filter itself by renormalizing its bandwidth.) We recall that, in the AL case, the

I-Q polarity-type Costas loop is obtained only as a high SNR approximation to closed-loop no. 3.

B. Performance

An analysis of the closed-loop performance of Fig. 6(a) results in an expression for the mean-squared

phase error given by (see the Appendix for the derivation)

P

[(1- p2+(o)) a + p2_(0)e L

{[(1 - p+ (0)) e K - p_(O)e -K] [(1 - p+(O)) e K + p_(O)e-K]L-:} 2

pSL (25)

where

= _ erfc cos ¢ +

P2+(¢) & P_(¢)IK_2K = _ erfc cos¢ + (26)
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(a) sin (o_ct+ 6) (dr (t)}

cos(O_ct+"e) {di (0}

,OxS,_C;q_
[0} J I .. i

,_TO LOOP

FILTER

(b) sin (o)ct + 6)

t(J cos (tact + O)

_ 2,/-_- r _k*l)T..[

( _P,- TO LOOP

,._ FILTER

(c)

r(0

sin (mot+ 0)

(_.l---fi_o j,, ,.)dt___

cos (O_ct+ C))

r

L-1 ) _..

Fig. 6. Implementation of ML closed-loops: (a) ML closed-loop no. 1---observation unpartitioned, (b) ML closed-loop
no. 2 (L = 1), and (c) ML closed-loop no. 3---observation partitioned.
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As we did for the analogous AL closed loop [see Fig. 3(a)], we have avoided the singular behavior of

the mean-squared phase error as Rd --* c_ by replacing the 2v_-S/N0 coefficient in front of the I&Ds in

Fig. 6(a) by an arbitrary constant, say K0, that remains finite as No --_ 0 and further normalized the

weighting coefficient as K a= (V/-_)KoT. As long as K0 (or equivalently K) is finite (which would be

the case in a practical implementation of the ML closed-loop scheme), the large SNR asymptotic behavior
of ML closed-loop no. 1 is

lim a_ = lim NoBL 0 (27)
R_-.c_ No--*0 S

as one would expect. What is indeed interesting is that, unlike the AL case, the value of K that minimizes

Eq. (25), which from the standpoint of closed-loop performance as measured by mean-squared phase error

would be considered optimum, is not K --_ O. In fact, for each value of Rd and L, there exists an optimum

value of K that unfortunately cannot be determined in closed form. Nevertheless, the optimum values

of K can be found numerically as a function of Rd by maximizing SL as determined from Eq. (25) for

each value of L. The results are illustrated in Fig. 7. The corresponding values of ($L)max are plotted

versus Rd in dB in Fig. 8 for the same values of L as those in Fig. 7. Results obtained from a com-

puter simulation of Fig. 6(b) agree with these analytically obtained numerical results for ($L)ma_ within
0.1 dB at Rd = --6 dB.

From Fig. 8, we observe that the performance of ML closed-loop no. 1 becomes worse with increasing

L, i.e., L = 1 gives the best performance. Thus, the special case of the implementation in Fig. 6(a)

corresponding to L = 1, i.e., Fig. 6(b), is the configuration of most interest. Also in the limit as L --* oo,

the optimum value of K approaches 0 independent of Rd. The corresponding value of SL is determined

by noting that for K --* 0 we have p+(0) = p_(0) = p2+(0) = p2-(0) _ p = 1/2 erfc v/-_. Then from

Eq. (25), we get

lim a_---(a_) 0 = _(1-2p)-2 = 1( V/-_d) -1* erfJ (S )0 = erfdvFR- d (28)

which also is independent of the observation length L. Since the optimum value of K is always greater than

0 (see Fig. 7), Eq. (28) also serves as a lower bound on the squaring-loss performance of ML closed-loop

no. 1. Other reasons for including this limiting squaring-loss behavior in Fig. 8 will become apparent

shortly when we consider the other ML closed-loop configurations.

As in the AL case, the performance of ML closed-loop no. 2 is identical to ML closed-loop no. 1 and

needs no further discussion. Moving on to ML closed-loop no. 3, we previously identified this as being

identical in form to the I-Q polarity-type Costas loop. Hence, its performance is independent of L and is

given by Eq. (28). Similarly, the performance of ML closed-loop no. 4 is also independent of L and given
by Eq. (28). Thus, we see that of the four ML closed loops, ML closed-loops nos. 1 and 2 are superior

to ML closed-loops nos. 3 and 4, which have performances that are identical and equal to those of the

former in the worst case (L --* c_).

When the performance of the best ML closed-loop scheme (i.e., nos. 1 or 2) is compared with that of

the best AL closed-loop scheme (i.e., nos. 3 or 4), we find that the latter, e.g., the I-Q MAP estimation

loop, is superior to the former for all values of Rd. This comparison is illustrated in Fig. 9, where the
squaring-loss performance of the two schemes is plotted versus Rd.

C. Loop S-Curves

It is of interest to examine the S-curve behavior of ML closed-loop no. 1 and compare it with that of

ML closed-loop no. 3 and AL closed-loop no. 3. The equation describing the loop S-curve, _(¢), of ML
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OPTIMUM MAP WEIGHTS -K= 2Es/N 0

L=I

L=2

L=3
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Fig. 7. Optimum weights (normalized) versus symbol SNR.

L=I

L =oo ( I-Q POLARITY-TYPE COSTAS LOOP)

L=3

-10 -8 -6 -4 -2 0 2 4 6 8

Es/No,da

Fig. 8. Squaring loss versus symbol SNR for ML closed-loop no. 1 or no. 2.
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closed-loop no. 1 is derived in the Appendix as Eq. (A-9) with the special case of L -- 1 (already shown

to yield the best tracking performance), given by Eq. (A-10). Figure 10 illustrates plots of 77(¢) versus ¢
over one cycle of _r rad for Rd = -5, 2, and 5 dB, respectively, where in each case, K has been chosen

equal to the optimum value as determined from Fig. 7. In the limit of small and large Rd, the S-curve

approaches the following functional forms:

sin 2¢, small Rd (29)_(¢) c< sin ¢ x sgn(cos ¢), large Rd

These limiting forms are identical to the same limiting behavior of the S-curves corresponding to ML

closed-loop no. 3--the I-Q polarity-type Costas loop, and AL closed-loop no. 3--the I-Q MAP estimation

loop.

V. Conclusions

Motivated by the theory of MAP carrier phase estimation, we have developed a number of closed-loop

structures suitably derived from ML and AL functions. Several of these structures reduce to previously

known closed-loop carrier phase synchronizers while others appear to be new. One of the new structures

derived from ML considerations gives improved performance over the I-Q polarity-type Costas loop, which
is also derived from these very same considerations. Of all the loops considered, however, the I-Q MAP

estimation loop, which is derived from average log-likelihood considerations, is the best overall from a

performance standpoint. We leave the reader with the thought that the structures proposed in this article

are not exhaustive of the ways that closed-loop phase synchronizers can be derived from open-loop MAP

estimation theory. Rather, they are given here primarily to indicate the variety of different closed-loop

schemes that can be constructed simply from likelihood and log-likelihood functions.

_D
"o --2

O3
09

0_4
(9

Z

<

o
co -6

2/I I I I I I I I I I I I I I I I I I I

L

_ I-Q MAP ESTIMATION LOOP f"

- OOP no. 1 or no. 2 (L=1)

-8

-10 I I n I I n i i i I i i i J i i I i n
-10 -8 -6 _4 -2 0 2 4 6 8 10

Es I N0,dB

Fig. 9. A comparison of the squaring performances of ML closed-loop no. 1 or no. 2 and
the I-Q MAP estimation loop (AL closed loop no. 3).
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OPTIMUM K, Rd = 2 dB

OPTIMUM K, Rd = 5 dB

Fig. 10. Loop S-curves for ML closed-loop no. 1 or no. 2 (L = 1).
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Appendix

Derivation of the Closed-Loop Tracking Performance
of ML Closed-Loop No. 1

Consider the closed loop in Fig. 5(a), whose error signal, e(t), at time t -- LT is characterized by

(/: ) /:e= exp Ko r(t)d_(t)sin (wet + O)dt x Ko r(t)d_(t) cos (wct+ O)dt (A-l)

Substituting r(t) of EQ. (1) into Eq. (A-l) results in

e = exp{Kov_ (foLTd(t)d_(t)dt)cos¢+KofoLTn(t)d_(t)sin(wct+_)dt}

d(t)d_(t)dt sin¢ + Ko n(t)d_(t) cos

In view of the rectangular phase shape assumed in Eq. (2) for the transmitted data waveform, d(t),
Eq. (A-2) can be written in the discrete form

)]e = exp k=o_d_k k cos ¢ + risk X Ko k_=od_k dk sin ¢ + rick (A-3)

where

( L (n,k = n(t) sin wet + dr; nck A n(t) cos wct+ dt (A-4)
JkT kT

are zero mean iid Gaussian random variables with variance 2 2 = NOT�4 and d_k zxO'nc k _ O_nsk

sgn (X//-_ dkcos¢+ risk). Introducing the further normalization K = KoTv/_ (note that when

Ko = 2VrffS/No, i.e., the gain suggested by the open-loop MAP estimation theory, then K = 2Rd) and
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normalizing nsk and nck to unit variance Gaussian random variables, Nsk 'and Nck, respectively, Eq. (A-4)
becomes

e=expkKEd_kk=O dkc°s¢+--_d_dNSk X Kk_=od_k dksin¢+_ ck
(A-5)

with dik _- sgn (dk cos ¢ + (1/x/_-d)Nsk).

Let 7(¢) denote the signal component (mean) of the error sample e. Then, because of the independence
of the N_k'S and Nck's, we have

7(¢) K sin ¢ \k=0 dikdk exp 1 g_k

L - 1 .N_z

x Hexp{Kd_l(dlc°s¢+_dNSl)}
/=0

l#k

(A-6)

where the over bar denotes statistical averaging. It is straightforward to show that the statistical averages
required in Eq. (A-6) are independent of the data bits. That is,

d_kdkexp {Kd_k (dkcos¢ + ---_dNSk) } Ns_

is independent of whether dk = 1 or dk = --1 and

exp{Kd_t (dlcos¢+ _---_dNSZ) } Nsz

is independent of whether dl = 1 or dl = -1. Performing these statistical averages gives the closed form
results

Nsk

{ ( 1 } eK_/4R_ eKcos¢ ¢]d_kdk exp Kd_k dk cos ¢ + --Nsk_ =
x/rTR- _ ] [(1 - p+(¢)) -p_(¢)e -Kc°s

(A-7a)

N N_t=
exp{Kd_t(dlcos¢+_l sz)} eK2/4Rd[(1 p+(¢))eKc°s¢+p-(¢)e-Kc°s¢]

(A-7D)

where
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p+(¢) = _erfc V/-_dCOS¢=t=

Finally, since Eq. (A-Ta) is independent of k and Eq. (A-Tb) is independent of l, then substituting these
results into Eq. (A-6), we get

_(¢) = (K sin ¢)ne LK_/41:td [(1 - p+ (¢)) e K cos ¢ _ p_ (¢)e-K cos ¢]

X [(1 -- p+ (¢)) e K cos ¢ + p_ (¢)e-K cos ¢] L--1 (A-9)

which represents the S-curve of the loop. For L = 1, Eq. (A-9) simplifies to

7(¢) = (K sin ¢)e g2/4Rd [(1 - p+ (¢)) e g cos ¢ _ p_ (¢)e-g cos ¢] (A-10)

which, using the definition of p±, is periodic in ¢ with period _r.

The slope of the S-curve at ¢ = 0 is needed for computing the closed-loop mean-squared phase error

performance. Differentiating Eq. (A-10) with respect to ¢ and evaluating the result at ¢ = 0 gives

[¢=0 = KLe LK2/4Rd [(1 - p+ (0)) eK cos ¢ _ p_ (0)e-K cos ¢]

× [(1- p+(0))eKc°_ + p_(O)e-_'¢°_]L-_ (A-11)

The noise component of e evaluated at ¢ = 0 is

N=exp KEd_k dkcos¢+_ddNSk
_, k=0

×
L-1 1
k=0

Which is zero mean and has variance

L1 1 (r 1
k=0

Averaging first over the N_k's, we get

/ ( / )1/4 2 i I

_v = _ \k=0 exp 2Kd_k dk + _Nsk x _ exp 2K dl + _Nsl
t_=u

Using Eq. (A-7) to evaluate the averages over the N_k's, we get

(A-12)

(A-13)

(A-14)
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where

a2N= K2L eLK2/a_ [(1 -- P2+(0)) e2K + P2-(0)e -2K] L
2Rd -

P2±(¢) _ erfc (V_d cos ¢ ± --_Rd)P±(¢)JK_2K = 1

(A-15)

(A-16)

Since e(t) is a .piecewise constant (over intervals of length LT) random process with independent

increments, its statistical autocorrelation function is triangular and given by

a_v, [v[_<LT}Re(T) _- (E {e(t)e(t + T)}) : L 0, otherwise (A-17)

Where (.) denotes time averaging, which is necessary because of the cyclostationarity of e(t). As is

customary in analyses of this type, we assume a narrow-band loop, i.e., a loop bandwidth BL <:< 1/T.

Then, e(t) is approximated as a delta:correlated process with effective power spectral density:

FN_ _ Re(T)dT = LTa2N (A-18)
--2 = 0o

Finally, the mean-squared phase error for the closed loop is

N_BL

which, with substitution of Eqs. (A-11) and (A-18), results in Eq. (26) of the main text.

(A-_9)

(
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